09
2022-07
5G前传/中传/回传
5G前传/中传/回传是不同实体AAU、DU和CU之间的连接​1、要弄明白什么是5G前传、中传和回传,首先我们需要了解5G移动通信络的逻辑架构图:手机-接入网-承载网-核心网-承载网-接入网-手机接入网,在我们无线通信里,一般指无线接入网,也就是通常所说的RAN(RadioAccessNetwork)。大家耳熟能详的基站。2、基站的构成:一个4G基站通常包括BBU(主要负责信号调制)、RRU(主要负责射频处理),馈线(连接RRU和天线),天线(主要负责线缆上导行波和空气中空间波之间的转换)。基带处理单元BBU:完成信道编解码、基带信号的调制解调、协议处理等功能,同时需要提供与上层网元的接口功能。DU:BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。3、前传、中传、回传是不同实体之间的连接:前传(fronthaul)指AAU连接DU部分传(middlethaul)指DU连接CU部分回传(backhaul):CU以上部分
09
2022-07
MEMS
微机电系统(MEMS)也称微电子机械系统、微系统、微机械。中文全称微机电系统英文全称MicroElectromechanicalSystem简称MEMSMEMS是指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。主要由传感器、动作器(执行器)和微能源三大部分组成。MEMS的特点就是小(1-100微米),非常小,比头发丝还小(70微米)。MEMS的原理:把机械臂与电磁感应圈做成一个吸引电级系统,通电后,电磁像磁铁一样把悬臂吸引过来,和传输线连上,这是开;断电后,磁性消失,悬臂与传输线断开,这是关。MEMS的应用:MEMS在我们生产,甚至生活中早已无处不在了,智能手机,健身手环、打印机、汽车、无人机以及VR/AR头戴式设备,部分早期和几乎所有近期电子产品都应用了MEMS器件。MEMS在光通信行业的应用包括:MEMSVOA(可调光衰减器)、MEMS光开关、MEMS光透镜阵列、MEMS光可调滤波器等。
09
2022-07
TO封装,即同轴封装。
TO(TransistorOutline),即晶体管外形。早期晶体管大都采用同轴封装,后来被借用到光通信中,叫做TO封装,即同轴封装。同轴是从激光器、透镜到光纤,每个光路的中心线在同一直线上。所以TO封装的光组件也叫做同轴封装。目前来说同轴器件因为易于制造和成本优势,基本霸占了主流的光器件市场应用。TO-CAN,Can的英文释义即罐子,将激光器芯片和探测器芯片装在一个罐子里。TO38、TO46、TO56,其数字代表这个罐子底座(TO底座)的直径,分别为3.8mm、4.6mm、5.6mm,光通信行业多用到这三个尺寸。除了TO封装,在光器件中规模商用的另一种是蝶形封装。
09
2022-07
EDFA
EDFA(Erbium-dopedOpticalFiberAmplifier)即掺铒光纤放大器,是对信号光放大的一种有源光器件。主要功能是对传输链路中的信号光进行功率补偿。为什么用EDFA:光纤的传输损耗和色散则限制了光信号的传输距离,因此在长距离传输时,每隔一定距离,需要加一个中继站(光放大器),光放大器完成对信号的放大和再生,以保障传输质量。EDFA的制作过程是,在光纤的纤芯材料二氧化硅中掺杂铒离子,在外部提供单独的泵浦光源,使得纤芯中的铒离子受到泵浦光的进“刺激”,发生能级跃迁,从而释放的光子;EDFA光放大器本质上跟激光器是一样的,激光器放大的光是谐振腔内增益物质产生的光,而放大器放大的是外部输入的光。EDFA的基本结构:EDFA也可以串联,进行级联放大。因EDFA也是光纤,故而与光纤的连接较为容易,即耦合效率高。EDFA的优点是工作波长损耗低,频带宽,增益高,噪声小。EDFA的缺点是只能放大1550nm波段的光。
09
2022-07
RZ编码(归零编码)
RZ编码也成为归零码,归零码的特性就是在一个周期内,用二进制传输数据位,在数据位脉冲结束后,需要维持一段时间的低电平。中文全称归零编码英文全称ReturnZeroCode简称RZ在数字电路中,组成一连串信息的基元就是0和1,无论是在CPU、DSP、MCU甚至是个数字计数器中,数字电路在其中能够处理的信息也只有0和1,而对于任何外界的信息,计算机都能通过两个量来描述,那就是0和1。而对于数字通信来说,想要用0和1来传递你想传达的信息,则必须要通过一种特殊的约定来进行同步,这种约定就是编码。两台设备要想进行有线通信,最终都是将想要传达的信息转变成一串比特流,进而在传输线上进行传输。常规数字通信为数据线+时钟线的形式,但对于高速信号而言,时钟线和数据线长度的稍稍偏差,就会造成接收端无法满足数据采样的建立时间,故会导致数据出错。而最好的方式就是将时钟信号和数据信号用同一根线来传递,所以出现了一些比较特殊的编码,是的时钟和数据能够融合在一起。RZ编码也成为归零码,归零码的特性就是在一个周期内,用二进制传输数据位,在数据位脉冲结束后,需要维持一段时间的低电平。举个图例:图中红色的线表示数据,只占据一部分的周期,剩下周期部分为归零段。而归零码而分为单极性归零码和双极性归零码,图1表示的是单极性归零码,即低电平表示0,正电平表示1。对于双极性归零码来说,则是高电平表示1,负电平表示0。如下图所示:这种编码方式虽说能够同时传递时钟信号和数据信号,但由于归零需要占用一部分的带宽,故传输效率也就收到了一定的限制,假设数据传输时间为t,一个周期时间为T,则这种传输效率η=t/T。
09
2022-07
物联网
物联网的定义:国际电信联盟在2005年将其定义为:将各种信息传感设备,如射频识别(RFID)装置、红外感应器、传感器、全球定位系统、激光扫描器等等,与互联网结合起来而形成的一个巨大网络,实现智能化识别和管理。物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。“物”的涵义:这里的“物”要满足以下条件才能够被纳入“物联网”的范围:1、要有数据传输通路;2、要有一定的存储功能;3、要有CPU;4、要有操作系统;5、要有专门的应用程序;6、遵循物联网的通信协议;7、在世界网络中有可被识别的唯一编号。技术及架构:物联网架构可分为三层:感知层、网络层和应用层。感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。关键技术:在物联网应用中有三项关键技术1、传感器技术:到目前为止绝大部分计算机处理的都是数字信号,需要传感器把模拟信号转换成数字信号,计算机才能处理。2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。关键领域:RFID;传感网;M2M;两化融合。产业链接:设备制造商、系统集成商、网络运营商和平台供应商开展步骤:(1)对物体属性进行标识,属性包括静态和动态的属性,静态属性可以直接存储在标签中,动态属性需要先由传感器实时探测;(2)需要识别设备完成对物体属性的读取,并将信息转换为适合网络传输的数据格式;(3)将物体的信息通过网络传输到信息处理中心,由处理中心完成物体通信的相关计算。物联网用途:物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制,在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然间的关系。发展趋势:物联拥有业界最完整的专业物联产品系列,覆盖从传感器、控制器到云计算的各种应用。产品服务智能家居、交通物流、环境保护、公共安全、智能消防、工业监测、个人健康等各种领域。构建了“质量好、技术优、专业性强,成本低,满足客户需求”的综合优势,持续为客户提供有竞争力的产品和服务。此外,普及以后,用于动物、植物和机器、物品的传感器与电子标签及配套的接口装置的数量将大大超过手机的数量。物联网的推广将会成为推进经济发展的又一个驱动器,为产业开拓了又一个潜力无穷的发展机会。按照对物联网的需求,需要按亿计的传感器和电子标签,这将大大推进信息技术元件的生产,同时增加大量的就业机会。业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。美国、欧盟等都在投入巨资深入研究探索物联网。我国也正在高度关注、重视物联网的研究,工业和信息化部会同有关部门,在新一代信息技术方面正在开展研究,以形成支持新一代信息技术发展的政策措施。
09
2022-07
NRZI 编码(反向不归零编码)
NRZI编码(NonReturnZeroInverted Code),即反向不归零编码。其实NRZI编码方式非常的简单,即信号电平翻转表示0,信号电平不变表示1;例如想要表示00100010(B),则信号波形如下图所示:由图可以看到,当电平状态发生变化时,表示的数据为0。在传输的数据中,很少出现全1的状态,故接收端可以根据发送端的电平变化确定采样时钟频率。但是有时候依然会出现数据为全1的状态,也就是说信号线一直保持一个状态,这个时候时钟信号就无法传输,接收端就无法同步时钟信号,这该如何解决呢?解决方式就是在一定数量的1之后强行插入一个0,就是说若信号线状态一直持续一段时间不变的话,发送端强行改变信号线的状态,接收端则只需要将这个变化忽略掉就可以了。例如有一段数据为:11111111(B)要发送,则整个传输线上的电平状态是这样的:
09
2022-07
曼彻斯特编码
曼彻斯特编码(ManchesterEncoding),也叫做相位编码(PE)是一个同步时钟编码技术,被物理层用来编码一个同步位流的时钟和数据;常用于局域网传输。在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号,就是说主要用在数据同步传输的一种编码方式。 但在不同的书籍中,曼彻斯特编码中,电平跳动表示的值不同,这里产生很多歧义:1、在网络工程师考试以及与其相关的资料中,如:雷振甲编写的《网络工程师教程》中对曼彻斯特编码的解释为:从低电平到高电平的转换表示1,从高电平到低电平的转换表示0,模拟卷中的答案也是如此,张友生写的考点分析中也是这样讲的。位中间电平从高到低跳变表示"0";位中间电平从低到高跳变表示"1"。2、在一些《计算机网络》书籍中,如《计算机网络(第4版)》中(P232页)则解释为高电平到低电平的转换为1,低电平到高电平的转换为0,《数据通信与网络(第三版)》,《计算机网络(第4版)》采用如下方式:位中间 电平从高到低跳变表示"1";位中间电平从低到高跳变表示"0"。在清华大学出版的《计算机通信与网络教程》也是这么说的,就以此为标准,我们就叫这为标准曼彻斯编码。至于第一种,我们在这里就叫它曼彻斯特编码。但是要记住,在不同的情况下懂得变通哦,否则会被老师扣分数的哦。这两者恰好相反,千万别弄混淆了。【关于数据表示的约定】事实上存在两种相反的数据表示约定。第一种是由G.E.Thomas,AndrewS.Tanenbaum等人在1949年提出的,它规定0是由低-高的电平跳变表示,1是高-低的电平跳变。第二种约定则是在IEEE802.4(令牌总线)和低速版的IEEE802.3(以太网)中规定,按照这样的说法,低-高电平跳变表示1,高-低的电平跳变表示0。由于有以上两种不同的表示方法,所以有些地方会出现歧异。当然,这可以在差分曼彻斯特编码(DifferentialManchesterencoding)方式中克服.
09
2022-07
PAM4
PAM4(4PulseAmplitudeModulation)信号作为下一代数据中心中高速信号互联的热门信号传输技术,被广泛应用于200G/400G接口的电信号或光信号传输。随着我们社会对数据的渴望不断增长-不仅数据越多,而且数据传输速度越快-基于NRZ类型编码的旧调制方案越来越不充分。我们需要尽可能有效地从A点到B点获取数据,无论是PC板上的芯片还是长途光纤的一端到另一端。在许多方面受到青睐的调制方案是PAM4。PAM4信号其采用4个不同的信号电平来进行信号传输,每个符号周期可以表示2个bit的逻辑信息(0、1、2、3)。下图是典型的NRZ信号的波形、眼图与PAM4信号的对比。由于PAM4信号每个符号周期可以传输2bit的信息,因此要实现同样的信号传输能力,PAM4信号的符号速率只需要达到NRZ信号的一半即可,因此传输通道对其造成的损耗大大减小。随着未来技术的发展,也不排除采用更多电平的PAM8甚至PAM16信号进行信息传输的可能性。PAM4信号为4电平脉冲幅度调制,可以显示比传统数字信号更多的bit逻辑信息,但其实另一方面在PAM4信号设计测试过程中遇到的挑战则尤为严峻:·比如PAM4信号对噪声更敏感,同样的系统噪声,PAM4信号约有9.5dB的信噪比;·比如在PAM4信号有16种切换状态,因此会导致上、下眼图在垂直方向上的不对称,进一步导致在交叉点处和眼高的中间处测得的眼宽并不一样,眼图的非线性问题也较易发生。·比如PAM4信号的虽然降低了信号的符号率,但10dB以上的通道损耗还是会使得接收端信号眼图完全闭合,因此,对于PAM4信号,发送端的预加重和接收端的信号均衡很重要。·比如…………在NRZ场景中,我们采用二进制模式,比如0011010,并将其编码为一系列固定电压电平,较低电压为零,较高电压为1(参见图中的数据流M)1的)。我们假设给定比特率为28Gb/s。图1PAM4加倍串行数据传输中的位数通过增加脉冲幅度调制的电平数来实现,但是以噪声敏感性为代价。如果我们将NRZ信号视为眼睛如图所示,它将具有比特周期T和幅度A.该信号所需的带宽与比特周期(1/T)有关。比特率越快,比特周期越短,带宽越高。还有一个信噪比(SNR)比要求,它与振幅有关。眼图变得越垂直越小,维持SNR就越难以解释链路接收端的信号。从根本上说,我们要做的是将数量增加一倍。我们从A点发送到B点的比特。实现这一目标的一种方法是添加第二个通道或通道。在这个通道中,我们可能希望发送一个不同的位模式,比如0101100(参见图1中的数据流L)。但这种方法有一个缺点,那就是我们现在需要两个发射器,两个接收器和两个通道。我们可能没有额外的房地产或功耗,所以我们寻找另一种解决方案。我们还可以做些什么来加倍比特率?一种方法是序列化两个比特流。我们创建了一个56-Gb/s通道,而不是两个28-Gb/s通道。结果,在我们以28Gb/s传输一位的同一时段,我们现在有两位以56Gb/s传输。这看起来像图1中的比特流ML。信号ML的眼图显示振幅仍然与信号M和L的振幅相同,但现在是时期T/2。如果我们颠倒这个数字,我们得到带宽,2/T.我们保留了与A相关的SNR要求,但信号所需的带宽增加了一倍。因此,它分别是SNR和带宽的好消息和坏消息。我们需要一种方法来将通道中的比特率加倍,而不会使所需带宽加倍,这就是PAM4进入图像的地方。PAM4取L(最低有效位)信号,将其除以一半,并将其加到M(最高有效位)信号。结果是四个信号电平而不是两个,每个信号电平对应一个两位符号。PAM4信号在图1中看起来像迹线M+L/2。最低级别为00,然后分别为01,10和11。PAM4表示脉冲幅度调制,“4”表示四级脉冲调制PAM4信号的眼图是不寻常的,有三个眼图开口和四个垂直堆叠的电平,如图所示。比特周期(或符号周期)是T.但是,这三只眼睛中的每一只眼睛的开口是A/3。对于带宽要求,我们回滚到1/T.因此,该信号移动56Gb/s,使用与移动28Gb/s的ML信号相同的带宽量。但是随着与A/3相关的SNR,我们发现我们的M+L/2信号是三倍m。实际上,我们已经将SNR换算为带宽。许多串行链路受带宽限制,因为在任何长度的铜线上移动都难以超过28Gb/s。但是当你有一些SNR空间时,考虑使用PAM4调制方案可能会有所收获。
09
2022-07
FEC
FEC是利用数据进行传输冗长信息的方法,当传输中出现错误,将允许接收器再建数据。​前向纠错也叫前向纠错码(ForwardErrorCorrection简称FEC),是增加数据通讯可信度的方法。在单向通讯信道中,一旦错误被发现,其接收器将无权再请求传输。“前向纠错”,它被广泛应用于通信系统中的编码技术以保证数据的准确性,它的基本思路是在发送端,把要发送的信息重新编码,加入一定的冗余校验信息,组成长度较长的codeword,待到达接收端之后,如果错误在可纠范围之内,通过解码检查后纠正错误,从而降低误码率,提高通信系统的可靠性。在光通信系统中,通过FEC的处理,可以以很小的冗余开销,有效降低系统的误码率,延长传输距离,实现降低系统成本的目的。前向纠错在数字通信领域应用很广,在无线、接入和传输等都有广泛应用。FEC的编码形式有很多种,比如说Hammingcode,Golay编码,BCH编码,但光通信领域使用较多的,从规范定义中就可以发现都以ReedSolomon为主,它是一种交织编码,使用一组纠错码,与低密度校验码和turbo码相比,具有更小的编码增益。但是它有很高的编码速率并且复杂度低,所以它适用于许多应用场景。对于FEC来说,增加多个冗余位之后,编码的抗干扰能力增强,编码纠错,检错的能力都变强。当然冗余位的多少需要和有效位开销之间找到一个平衡点,并不是越多越好。否则也会严重影响数据传输的效率。FEC中还会用到interleaving,也可以称为“交织处理”,它可以将可能出现的长串误码分散到多个RS编码序列中,使得分散后的误码长度落到编码纠错能力范围之内,从而使得交织处理之前超出纠错能力的长误码串也能得到正确的恢复。
东莞市春亚自动化科技有限公司 版权所有 Copyright
技术支持:东莞网站建设